A Search for the Higgs Boson in its Associated Production with a W boson at the Fermilab DØ Experiment

Venkat Kaushik

venkat@fnal.gov High Energy Physics, U.T. Arlington

November 6, 2007

- Introduction and Motivation
- Experimental Apparatus
- Higgs Searches at Tevatron
- Run II A Dataset
- Background Modeling
- Object ID Efficiencies
- High Level Analysis
- Tagging b-quark Jets
- Optimization
- Systematic Uncertainties
- Cross Section Limits
- Summary and Conclusions

Electroweak Symmetry Breaking/Higgs Mechanism

- $SU(2)_L \otimes U(1)_Y$ gauge theory is tested to a great precision. It is not an exact symmetry of our vacuum. Otherwise, quarks, leptons and gauge bosons would all be massless!
- Simplest solution: Complex doublet of scalar fields, *i.e.*, 4 degrees of freedom (4 dof) in a ϕ^4 potential: $V(\Phi) = \mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$, $\mu^2 < 0$, $\lambda > 0$

•
$$\langle \Phi \rangle_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$
 where $v = \sqrt{-\mu^2/\lambda} \neq 0$

• Non-zero VEV $\langle \Phi \rangle_0$ spontaneously breaks the global symmetry

- $\mathcal{L}_{Higgs} = \left| (\partial_{\mu} + igW_{\mu}^{\alpha}T^{\alpha} + ig'B_{\mu})\Phi \right|^{2} V(\Phi)$
- ullet Transverse polarizations of W^\pm and Z absorb 3 out of 4 dof. Remaining one is the fundamental scalar H

Experimental Constraints on the Higgs Mass

- Precision fits to electroweak data with M_{top} =170.9 \pm 1.8 GeV
- Direct search at LEP excludes $M_H \leq 114.4 \text{ GeV} @ 95\% \text{ CL}$
- M_W =80.413 \pm 0.048 GeV(CDF) \Rightarrow Data prefers lighter Higgs!
- Best fit of $M_H = 76^{+33}_{-24}$, or $M_H < 144 \text{ GeV}$

FERMILAB'S ACCELERATOR CHAIN

- $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV
- 1000 superconducing magnets, 4 mi. circumference, W^{\pm}/Z factory
- Bunch crossing every 396 ns.
- Run IIA: April 2002 April 2006 $\sim 1.3 \ fb^{-1}$ delivered

- CC: $|\eta| < 1.1$; EC: $1.5 < |\eta| < 3.0$
- DAQ and CAL electronics upgrades
- Triggers on tracks and displaced vertices
- Run IIA: $\sim 1.0 \ fb^{-1}$ recorded

DØ Triggering System

Hardware based

 $4.2 \mu s$

- Simple Signatures
 in each Sub-Detector
- Software and Firmware based
- Physics Objects
 e.u.jets, tracks
- Software based
- Simple versions of reconstruction algorithms
- Triggers for a specific physics group: B Physics, Electroweak, Higgs, QCD, Top
- Objects: e/γ , μ , τ , jets, $\not\!\!E_T$ and combinations of these
- For "rare" / unknown phenomena: <u>Maximize</u> exposure rate
 ⇔ <u>minimize</u> prescale for highest luminosities

Higgs - Production and Decay at the Tevatron

- Gluon fusion dominates $\sigma(gg \rightarrow H) = 0.8$ 0.2 pb
- $\sigma(WH) = 0.2 0.03 \text{ pb}$
- WH is accessible and easy to trigger
- $M_H < 135 \text{ GeV}: H \rightarrow b\bar{b}$
- Two b quarks $\Rightarrow b$ -tagging
- $W \rightarrow e \nu \Rightarrow$ lepton and $\not\!\!E_T$
- $M_H > 135 \text{ GeV}: H \rightarrow WW^*$

- $\begin{array}{c} \bullet \hspace{0.2cm} p\bar{p} \hspace{0.2cm} \rightarrow \hspace{0.2cm} WH \hspace{0.2cm} \rightarrow \hspace{0.2cm} \ell \hspace{0.2cm} \nu \hspace{0.2cm} b\bar{b} \\ (\ell = e, \mu, \tau \rightarrow e/\mu) \end{array}$

- DØ Collaboration published WH results in electron channel with 174 pb⁻¹
- ullet Combined results from electron and muon channels 400 pb^{-1} are currently in review for publication in PLB
- Analysis results presented here correspond to 1.04 fb⁻¹
- Increase in detector acceptance, Optimization of b-tagging, and "OR" ing Triggers are new to this analysis

Dataset, Triggers and Luminosity

- Initial Dataset: ~335 million events on tape
- Data Quality: Compromised data flagged by each subdetector (\sim 5%)
- ullet Subskim: \sim **590 thousand events** remain when requiring at least
 - one good, track-matched EM object, $p_T > 15 \text{ GeV}$
 - ullet two good jets corrected for their energy scale, each with $p_T>15~{
 m GeV}$
- EM+Jet Triggers: Integrated Luminosity of 1.04 fb⁻¹

List	Trigger	${\sf pb}^{-1}$
v8	EM15_2JT15	23.35
v9	EM15_2JT15	24.73
v10	EM15_2JT15	9.81
v11	EM15_2JT15	63.40
v12	E1_SHT15_2J20	227.35
v13a	E1_SHT15_2J_J25	55.22
v13b	E1_SHT15_2J_J30	298.21
v14	E1_SHT15_2J_J25	333.57
		Total 1035.64

- Single-EM Triggers (Calorimeter-based, Track-based, "OR"-combination)
- An OR-combination of all Single-EM and EM+Jet

Physics Background

• $t\bar{t} \rightarrow \ell\ell\nu\nu b\bar{b}$

• $t\bar{t} \rightarrow \ell\ell jjb\bar{b}$

• $WZ \rightarrow jj\ell\ell\ell\nu$

• $Wb\bar{b} \rightarrow \ell \nu b\bar{b}$

• $Wjj \rightarrow \ell \nu jj$

• $tb \rightarrow \ell \nu b \bar{b}$

- Physics background processes are simulated using PYTHIA, ALPGEN and COMPHEP
- All events undergo full DØ detector simulation
- All bakgrounds are normalized to their SM cross sections except W + jets
- W + jets is normalized to data after subtracting all other backgrounds from it.
- W + jets is largest in pre-tagged and $t\bar{t}$, Diboson and tb are significant in b-tagged events

Tag and Probe Method

 $Z
ightarrow e^+e^-$ Invariant Mass Spectrum

- Two EM candidates with M_{Inv/e^+e^-} consistent with a Z boson
- Tag must pass stringent cuts
- Probe is required to pass the cuts relevant to the efficiency being determined, i.e., trigger
- Fit signal/background using Voigtian/falling-exponential
- Probe EM object is matched to L1/L2/L3 objects ($\Delta R < 0.4$)
- If there is a match at all three levels, probe passes trigger
- Trigger Efficiency, $Eff_{trig}(\eta, p_T)$
 - $= \frac{\text{#Probe objects passing trigger}}{\text{#Probe candidates}}$

$$\texttt{E1_SHT25} \longrightarrow \left\{ \begin{array}{ll} \texttt{L1} & \texttt{CEM(1,12)} \\ \texttt{L2} & \texttt{L2EM(1,15)} \\ \texttt{L3} & \texttt{ELE_NLV_SHT,25} \end{array} \right.$$

- L1: Cal. EM object, $E_T > 12 \,\text{GeV}$
- L2: L2 EM cluster with $E_T > 15 \,\text{GeV}$
- L3: Requires an electron satisfying tight shower shape requirements with E_T > 25 GeV

	EM_MX	EM_HI	EM_MX_SH	EM_HI_SH
ı	EM_MX_EMFR8	EM_HI_EMFR8		
	E1_SHT20	E1_SH30	E2_SHT20	E2_SH30
ı	E3_SHT20	E3_SH30	E1_L50	E1_VL70
ı	E1_SHT22	E1_SH30	E2_SHT22	E2_SH30
ĺ	E3_SHT22	E3_SH30	E4_SHT22	E4_SH30
ĺ	E1_L70	E1_NC90		

Name	L1	L2	L3	
EM_A	$L1_A$	$L2_A$	$L3_A$	
EM_B	$L1_B$	-	$L3_B$	
EM_C	$L1_C$	$L2_C$	$L3_C$	

- PassProbe($EM_A \parallel EM_B \parallel EM_C$) \equiv MatchProbe($L1_A \parallel L1_B \parallel L1_C$) && MatchProbe($L2_A \parallel L2_C$) && MatchProbe($L3_A \parallel L3_B \parallel L3_C$)
- The luminosity of the dataset is determined for the unprescaled trigger

Trigger Efficiency: Single-EM "OR"

- Calo+Trk based triggers have higher efficiency compared to Calo-only
- ullet Especially true for $p_T^e <$ 20 GeV for $|\eta_{det}| < 1.1$
- Enables to lower p_T threshold for selection of electrons
- ullet Marginal improvement in efficiency for $1.1 < |\eta_{ extit{det}}| < 2.5$
- To apply trigger efficiency to MC event, $Eff_{trig}(p_T^e, \eta_{det}^e)$ is applied as an event-weight

$$EM15_2JT15 \longrightarrow \left\{ \begin{array}{ll} \text{L1} & \text{CEM}(1,10) \; \text{CJT}(2,5) \\ \text{L2} & \text{EM}(.85,10.) \; \text{2JET}(10.) \\ \text{L3} & \text{Ele}(\text{ELE_LOOSE_SH.T},1,15.) \; \text{Jet}(\text{SCJET_9},2,15.) \end{array} \right.$$

- Trigger Efficiency for each level/each object is determined separately
- To apply the overall trigger efficiency per event for MC, define $P(L1\ L2\ L3) = P(L1) \times P(L2|L1) \times P(L3|L2\ L1)$
- Triggering on electron is independent of trigger on other objects *i.e.*, jets, $\not\!\!E_T$ $P(e,jet) = P(e) \times P(jet)$
- Overall event-wide probability of passing EM+Jet Trigger is given by $P(L1\ L2\ L3,\ e,\ jet) = P(L1,e) \times P(L2|L1,e) \times P(L3|L2\ L1,e) \times P(L3|L2\ L1,jet) \times P(L3|L2\ L1,jet)$
- Luminosity weighted Probability

$$P(\text{evt}) = \frac{\sum_{\textit{ver}} \mathcal{L}_{\textit{ver}} \cdot P_{\textit{ver}}(\text{evt})}{\sum_{\textit{ver}} \mathcal{L}_{\textit{ver}}}$$

Object ID Efficiency

■ Electron

$$rac{\epsilon_{ID}}{Data}$$
 $rac{CC}{77.6 \pm 0.3}$ $rac{63.3 \pm 0.4}{63.6 \pm 0.1}$ $rac{63.3 \pm 0.4}{70.6 \pm 0.2}$

☞ Jets

•
$$f_{JES} = \frac{E_{jet}^{corr}}{E_{iet}^{uncorr}} = \frac{1}{E_{iet}^{uncorr}} \cdot \frac{E_{jet}^{uncorr} - O}{F_{\eta} \cdot R \cdot S}$$

• JES Correction: $(30-45)\% \pm (3-5)\%$

W + 2(or 3) Jets: Event Selection Criteria

™ Electron

- $f_{EM} > 90\%$, $f_{iso} < 15\%$
- Shower shape: $\chi^2_{HMx7} < 50$
- Track match to EM cluster (E/p + spatial)

	рт	Acceptance
CC	>15 GeV	$ \eta < 1.1$
EC	>25 GeV	$1.1 < \eta < 3.0$

EM Likelihood:

\square Missing E_T ($\not \! E_T$)

• CC: ∉_T > 20 GeV EC: ∉_T > 25 GeV

™ Two/Three Jets

- Jet energy scale corrected, good (L1conf) Jets
- $Jet_1 p_T > 25 \text{ GeV}$ $Jet_{2,3} p_T > 20 \text{ GeV}$
- $|\eta| < 2.5$, n90 > 1
- $0.05 < f_{EM} < 0.95$, $f_{CH} < 0.4$

□ Other

- No other isolated electron or muon in the event
- $\Delta\phi(\not\!\!E_T\,,e)>1$ $0.25~\!\!\!\times\!\!\!\!E_T$

QCD/Multijet Background

- 1. $N_{loose} = N_{em} + N_{qcd}$
- 2. $N_{tight} = \epsilon_{Ih} N_{em} + \epsilon_{qcd} N_{qcd}$

Trigger List	Fake Rate	2 jets (%)	Fake Rate 3 jets (%)		
irigger List	CC	EC	CC	EC	
v8-11	5.4 ± 0.2	6.3 ± 0.2	6.0 ± 0.2	7.7 ± 0.2	
v12	5.7 ± 0.1	8.2 ± 0.1	8.4 ± 1.0	8.3 ± 0.3	
v13	6.0 ± 0.1	8.5 ± 0.1	8.2 ± 1.0	10.3 ± 1.0	
v14	6.6 ± 0.1	8.8 ± 0.1	6.6 ± 1.0	8.8 ± 1.0	

- \bullet ϵ_{lh} isdeterimed using tag and probe method
- ϵ_{qcd} : $\not\!E_T < 10$ GeV One good jet $|\eta| < 1.1, \; f_{EM} < 0.7$

Evidence for W + 2 Jets Production

CC Analysis

EC Analysis

• data W+jets QCD Wcc/W au
u t ar t W b ar b t b W Z W H

Identifying b-quark jets: b-tagging

Neural Network Tagger - Seven Inputs

- 1) Decay length significance of the displaced vertex
- 2) Impact parameter significance of tracks
- 3) Probability that the jet originates from the primary vertex
- 4) χ^2/N_{dof} of the fit to the displaced vertex
- 5) No. of tracks used for displaced vertex
- 6) Mass of the tracks used for the displaced vertex
- 7) No. of displaced vertices found in the input jets

- NN tagger: Large improvement compared to individual taggers
- Taggability: Jet has at least two tracks each with $p_T > 1 \text{ GeV}$
- Double Tag (DT)
 Loose operating point
- Exclusive Single Tag (EST)
 Tight operating point

Tag	Effy. (%)	Fakerate (%)
DT	59.3	1.7
EST	47.6	0.55

Tagging Jets in Simulated Events

- Tag Rate Functions (TRF): Probability of NN-tagger to tag a b-quark,
 c-quark, light-quark jets
- Data and MC have differences in tracking related quantities
- Two different approaches
 - Tag MC jets. Correct for difference in taggability and tagging efficiency $W^{MC}(jet) = \epsilon^{MC}_{taggability} \times SF_{taggability} \times \epsilon^{MC} \times SF_{b \rightarrow \mu}$
 - Compute event-wide probability, $P(jet) = \epsilon_{taggability} \times TRF(jet)$

Dijet Invariant Mass in b-tagged Events

Trigger Optimization

- Overall combination has higher efficiency than Single-EM alone or EM+Jets alone
- Define the probability of an event to pass Single-EM or EM+Jet Triggers $P(Single-EM \mid\mid EM+Jet) = P(e \text{ of } EM+Jet) \times P(\text{jet of } EM+Jet) + P(Single-EM) P(e \text{ of } EJets \&\& Single-EM) \times P(\text{jets of } EM+Jet)$

Signal Significance: (systematics not quoted)

	Single-EM		EM+Jet		Combined	
	ST DT		ST	DT	ST	DT
WH Signal	1.08	1.04	1.77	1.04	1.60	1.48
Expected MC	523.0	177.6	634.3	132.5	796.9	249.9
Observed Data	495	178	596	115	835	279
S/\sqrt{B}	0.048	0.089	0.070	0.090	0.057	0.094

Systematic Uncertainties

Total Uncertainty: $\sim 12\%$ for *WH* and *WZ*, $\approx 26\%$ for *Wjj* and *Wbb*, $\sim 19\%$ for $t\bar{t}$, tb and QCD

- Electron:
 - Reconstruction and identification: 3%
 - Trigger efficiency: 3%
 - Calibration of the electron energy: 3%
 - Electron energy smearing: 3%
- Primary vertex reconstruction: 4%
- Jets:
 - Jet Energy Scale: $\approx 2\%$
 - Reconstruction and identification: 3%
 - Jet multiplicity/fragmentation: 5%
- b-tagging: Wjj $\approx 21.2\%$ and $\sim 12\%$ for the rest
 - Taggability
 - Tagging scale factor for NN
- Luminosity: 6.1%
- Theoretical cross section: $t\bar{t}=16\%$, tb=18%, $Wjj\approx20\%$, 6-9% rest of the processes

- Choose dijet invariant mass as the final variable
- Define two hypotheses

 Background Only (Null) Hypothesis, $H_0 \equiv \text{No signal}$ Signal+Background Hypothesis, $H_1 \equiv \text{Presence of } WH \text{ signal}$
- Define a Poisson Log Likelihood Ratio (LLR) test statistic

$$Q(\vec{s}, \vec{b}, \vec{d}) = \frac{P(data|H_1)}{P(data|H_0)} = \frac{e^{-(s+b)}(s+b)^d}{d!} / \frac{e^{-b}(b)^d}{d!}$$
$$\chi = -2\ln Q = 2\left[s - n\ln\left(1 + \frac{s}{b}\right)\right]$$

• Define a confidence level for B-only and S+B hypotheses

$$CL_n = \int_{\gamma_{s,t}}^{\infty} \frac{dP_n}{d\chi} d\chi \qquad n = b, s + b$$
 (1)

CL_s Illustrated

- PDF for B-only and S+B are populated via outcomes of repeated trials
- Green curve is the Poisson PDF $dP_b/d\chi$ with mean value b
- Red curve is the Poisson PDF $dP_{s+b}/d\chi$ with mean value s+b
- Black dotted line is the observed LLR, χ_d
- By construction $CL_s = CL_{s+b}/CL_b$
- \bullet S+B hypothesis is excluded at 95% CL when 1 $CL_s \leq 0.95$

Effect of Systematics

- Systematics are included into the signal and background outcomes of MC trials via Gaussian distribution
- Total uncertainty is 10-20% for signal and 10-25% for backgrounds
- Theoretical cross section, b-tagging, Luminosity, Jet Energy Scale, Lepton ID
- Expected Limit: Assumes hypothetical outcome matching expected background
- LLR_b LLR_{s+b} Separation indicates discrimination power of analysis
- ullet 1 σ and 2 σ width of LLR_b indicates sensitivity of analysis to signal-like fluctuation in data
- $LLR_{obs} < 0 \Rightarrow$ data is signal-like. Observed limit > Expected Limit
- $LLR_{obs} > 0 \Rightarrow$ data is background-like. Observed limit < Expected Limit

Limit Ratio and Analysis Sensitivity

Cross Section Limit for $W(H) \rightarrow e\nu(b\bar{b})$

 $m_H = 115 \text{ GeV}/c^2 \text{ Limit Ratio } (\sigma_{SM} = 0.13 \text{ pb})$

Analysis	$\sigma_{\sf exp}/\sigma_{\sf SM}$	σ_{obs}/σ_{SM}
Moriond CC (2jet)	12.6	16.8
CC (2jet)	10.5	18.4
CC (2jet & 3jet)	10.1	20.7
CC+EC (2jet)	10.1	15.1
CC+EC (2jet & 3jet)	9.9	18.4

Summary

- ullet W + 2jets, W + 3jets (control sample) events are analyzed in EST and DT tagged events
- Significant improvement in sensitivity is achieved compared to previous analyses in addition to an increase due to higher luminosity
 - NN-tagging: \sim 35% per jet \Rightarrow 1.35 \times 1.35
 - Include End Calorimeter: \sim 20% \Rightarrow 1.2 (VSK)
 - "OR" ing of Triggers: $\sim 15\% \Rightarrow 1.15$ (VSK)
 - b-tag working point optimization based on S/\sqrt{B} (VSK/Yuji)
- Overall increase in sensitivity: factor of 1.6 from electron channel
- No signal is observed in excess of the SM prediction.
- 95% CL upper limits are derived on the production cross section $\sigma(p\bar{p}\to WH)\times BR(H\to b\bar{b})$ as a function of Higgs mass in the range $105 < m_H < 145~{\rm GeV}/c^2$.

Conclusions

- $WH \rightarrow \ell \nu b \bar{b} \ \ell = e \, \mu$ combination yields factor of 2.1 increase in sensitivity
- 0.67 fb⁻¹ of additional data included in the combination. Does not include EC analysis or Trigger optimization

- Further improvements in analysis (NN selection, Improving mass resolution of dijets, electron/muon ID)
- Plans for publication of combined result in PLB foreseen in the near future
- Prospects to exclude low mass Higgs at Tevatron are bright with DØ and CDF results combination by 2009

Systematic Uncertainties

Source	WH	WZ	$Wb\bar{b}$	Wjj	tτ	tb	QCD
Trigger eff.	3.0	3.0	3.0	3.0	3.0	3.0	
Primary Vertex Reco.	4.0	4.0	4.0	4.0	4.0	4.0	
EM ID/Reco eff.	3.0	3.0	3.0	3.0	3.0	3.0	
EM Likelihood eff.	3.0	3.0	3.0	3.0	3.0	3.0	
EM energy/smearing	3.0	3.0	3.0	3.0	3.0	3.0	
Jet ID/Reco eff.	3.0	3.0	3.0	3.0	3.0	3.0	
Jet multiplicity/frag.	5.0	5.0	5.0	5.0	5.0	5.0	
Jet Energy Scale	2.0	2.0	3.0	2.0	3.0	1.0	
Jet taggability	3.0	3.0	3.0	3.0	3.0	3.0	
NN-tagger Scale Factor	2.0	2.0	2.0	15.0	2.0	2.0	
Acceptance err.	10.1	10.1	10.4	18.0	10.4	10.0	
Cross Section	6.0	6.0	9.0	9.0	16.0	16.0	
Heavy-Flavor K-factor			20.0	20.0			
Total uncertainty	11.8	11.8	24.3	28.4	19.1	18.9	18.8

Combined Limits: Full SM Combination

